Bibliography and Index of the Sirenia and Desmostylia  


Home   —   Introduction   —   Appendices   —   Search   —   [ Browse Bibliography ]   —   Browse Index   —   Stats
ANONYMOUS  -  A  -  B  -  C  -  D  -  E  -  F  -  G  -  H  -  I  -  J  -  K  -  L  -  M  -  N  -  O  -  P  -  Q  -  R  -  S  -  T  -  U  -  V  -  W  -  X  -  Y  -  Z
 

"Runge, Michael C."

 
 
Kendall, William L.; Langtimm, Catherine A.; Beck, Cathy A.; Runge, Michael C. (detail)
   
2004
Capture-recapture analysis for estimating manatee reproductive rates.
Mar. Mamm. Sci. 20(3): 424-437. 4 tabs. 2 figs. July 2004 (mailed July 28, 2004).
 
 
Runge, Michael C.; Langtimm, Catherine A.; Kendall, William L. (detail)
   
2004
A stage-based model of manatee population dynamics.
Mar. Mamm. Sci. 20(3): 361-385. 3 tabs. 5 figs. July 2004 (mailed July 28, 2004).
 
 
Runge, Michael C.; Sanders-Reed, C. A.; Fonnesbeck, C. J. (detail)
   
2007a
A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris).
U. S. Geol. Survey Open-File Report 2007-1082. 41 pp. http://www.pwrc.usgs.gov/resshow/manatee/documents/OFR2007-1082.pdf.
 
 
Runge, Michael C.; Sanders-Reed, C. A.; Langtimm, Catherine A.; Fonnesbeck, C. J. (detail)
   
2007b
A quantitative threats analysis for the Florida manatee (Trichechus manatus latirostris).
U. S. Geol. Survey Open-File Report 2007-1086. 34 pp. http://www.pwrc.usgs.gov/resshow/manatee/documents/OFR2007-1086.pdf.
 
 
Schwarz, Lisa K.; Runge, Michael C. (detail)
   
2009
Hierarchical Bayesian analysis to incorporate age uncertainty in growth curve analysis and estimates of age from length: Florida manatee (Trichechus manatus) carcasses.
Canad. Jour. Fish. Aquat. Scis. 66(10): 1775-1789. Oct. 2009.
–French summ.
 
 
Martin, Julien; Fackler, Paul L.; Nichols, James D.; Lubow, Bruce C.; Eaton, Mitchell J.; Runge, Michael C.; Stith, Bradley M.; Langtimm, Catherine A. (detail)
   
2011
Structured decision making as a proactive approach to dealing with sea level rise in Florida.
Climate Change 107(1-2): 185-202. 5 figs. DOI:10.1007/s10584-011-0085-x. July 2011.
–ABSTRACT: Sea level rise (SLR) projections along the coast of Florida present an enormous challenge for management and conservation over the long term. Decision makers need to recognize and adopt strategies to adapt to the potentially detrimental effects of SLR. Structured decision making (SDM) provides a rigorous framework for the management of natural resources. The aim of SDM is to identify decisions that are optimal with respect to management objectives and knowledge of the system. Most applications of SDM have assumed that the managed systems are governed by stationary processes. However, in the context of SLR it may be necessary to acknowledge that the processes underlying managed systems may be non-stationary, such that systems will be continuously changing. Therefore, SLR brings some unique considerations to the application of decision theory for natural resource management. In particular, SLR is expected to affect each of the components of SDM. For instance, management objectives may have to be reconsidered more frequently than under more stable conditions. The set of potential actions may also have to be adapted over time as conditions change. Models have to account for the non-stationarity of the modeled system processes. Each of the important sources of uncertainty in decision processes is expected to be exacerbated by SLR. We illustrate our ideas about adaptation of natural resource management to SLR by modeling a non-stationary system using a numerical example. We provide additional examples of an SDM approach for managing species that may be affected by SLR, with a focus on the endangered Florida manatee.
 
 
Runge, Michael C.; Sanders-Reed, Carol A.; Langtimm, Catherine A.; Hostetler, J. A.; Martin, Julien; Deutsch, Charles J.; Ward-Geiger, Leslie I.; Mahon, Gary L. (detail)
   
2017
Status and threats analysis for the Florida manatee (Trichechus manatus latirostris), 2016.
U.S. Geological Survey Scientific Investigations Report 2017-5030: ix + 40. 8 tabs. 18 figs. https://doi.org/10.3133/sir20175030
–ABSTRACT: Trichechus manatus (West Indian manatee), especially T. m. latirostris, the Florida subspecies, has been the focus of conservation efforts and extensive research since its listing under the Endangered Species Act of 1973. To determine the status of, and severity of threats to, the Florida manatee, a comprehensive revision and update of the manatee Core Biological Model was completed and used to perform a population viability analysis for the Florida manatee. The probability of the Florida manatee population falling below 500 adults on either the Gulf or East coast within the next 100 years was estimated to be 0.42 percent. This risk of quasi-extinction is low because the estimated adult survival rates are high, the current population size is greater than 2,500 on each coast, and the estimated carrying capacity for manatees is much larger than the current abundance estimates in all four regions of Florida. Three threats contribute in roughly equal measures to the risk of quasi-extinction: watercraft-related mortality, red-tide mortality, and loss of warm-water habitat. Only an increase in watercraft-related mortality has the potential to substantially increase the risk of quasi-extinction at the statewide or coastal level. Expected losses of warm-water habitat are likely to cause a major change in the distribution of the population from the regions where manatees rely heavily on power plant effluents for warmth in winter (Southwest and Atlantic regions) to the regions where manatees primarily use natural springs in winter (Northwest and Upper St. Johns regions). The chances are nearly 50 percent that manatee populations in the Southwest and Atlantic regions will decrease from their 2011 levels by at least 30 percent over the next century.
  A large number of scenarios were examined to explore the possible effects of potential emerging threats, and in most of them, the risk of quasi-extinction at the coastal scale within 100 years did not rise above 1 percent. The four exceptions are scenarios in which the rate of watercraft-related mortality increases, carrying capacity is only a fraction of the current estimates, a new chronic source of mortality emerges, or multiple threats emerge in concert. Even in these scenarios, however, the risk of falling below 500 adults on either the East coast or the Gulf coast within 100 years from 2011 is less than 10 percent. High adult survival provides the population with strong resilience to a variety of current and future threats. On the basis of these analyses, we conclude that if these threats continue to be managed effectively, manatees are likely to persist on both coasts of Florida and remain an integral part of the coastal Florida ecosystem through the 21st century. If vigilance in management is reduced, however, the scenarios in which manatees could face risk of decline become more likely.

Daryl P. Domning, Research Associate, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, and Laboratory of Evolutionary Biology, Department of Anatomy, College of Medicine, Howard University, Washington, D.C. 20059.
Compendium Software Systems, LLC