|
|
Hunter, Margaret E.; Mignucci-Giannoni, Antonio A.; Pause Tucker, Kimberly C.; King, Timothy L.; Bonde, Robert K.; Gray, Brian A.; McGuire, Peter M.
(detail)
|
|
|
2012 |
Puerto Rico and Florida manatees represent genetically distinct groups.
Conserv. Genet. 13(6): 1623-1635. 3 tabs. 4 figs. + online supplemental material. DOI 10.1007/s10592-012-0414-2 Dec. 2012 (publ. online Oct. 7, 2012).
–ABSTRACT: The West Indian manatee (Trichechus manatus) populations in Florida (T. m. latirostris) and Puerto Rico (T. m. manatus) are considered distinct subspecies and are listed together as endangered under the United States Endangered Species Act. Sustained management and conservation efforts for the Florida subspecies have led to the suggested reclassification of the species to a threatened or delisted status. However, the two populations are geographically distant, morphologically distinct, and habitat degradation and boat strikes continue to threaten the Puerto Rico population. Here, 15 microsatellite markers and mitochondrial control region sequences were used to determine the relatedness of the two populations and investigate the genetic diversity and phylogeographic organization of the Puerto Rico population. Highly divergent allele frequencies were identified between Florida and Puerto Rico using microsatellite (F ST = 0.16; R ST = 0.12 (P < 0.001)) and mitochondrial (F ST = 0.66; Ф ST = 0.50 (P < 0.001)) DNA. Microsatellite Bayesian cluster analyses detected two populations (K = 2) and no admixture or recent migrants between Florida (q = 0.99) and Puerto Rico (q = 0.98). The microsatellite genetic diversity values in Puerto Rico (HE = 0.45; NA = 3.9), were similar, but lower than those previously identified in Florida (HE = 0.48, NA = 4.8). Within Puerto Rico, the mitochondrial genetic diversity values (π = 0.001; h = 0.49) were slightly lower than those previously reported (π = 0.002; h = 0.54) and strong phylogeographic structure was identified (F ST global = 0.82; Ф ST global = 0.78 (P < 0.001)). The genetic division with Florida, low diversity, small population size (N = 250), and distinct threats and habitat emphasize the need for separate protections in Puerto Rico. Conservation efforts including threat mitigation, migration corridors, and protection of subpopulations could lead to improved genetic variation in the endangered Puerto Rico manatee population.
|
|
|
Pause Tucker, Kimberly C.; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.
(detail)
|
|
|
2012 |
Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation.
Jour. Mammalogy 93(6): 1504-1511. 3 tabs. 1 fig. + online supporting information. DOI: 10.1644/12-MAMM-A-048.1 Dec. 17, 2012.
–ABSTRACT: Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.
|
|