|
|
Martin, Julien; Edwards, Holly H.; Burgess, Matthew A.; Percival, H. Franklin; Fagan, Daniel E.; Gardner, Beth E.; Ortega-Ortiz, Joel G.; Ifju, Peter G.; Evers, Brandon S.; Rambo, Thomas J.
(detail)
|
|
|
2012 |
Estimating distribution of hidden objects with drones: from tennis balls to manatees.
PLoS One 7(6):e38882. 8 pp. 7 figs. DOI: 10.1371/journal.pone.0038882. June 25, 2012.
–ABSTRACT: Unmanned aerial vehicles (UAV), or drones, have been used widely in military applications, but more recently civilian applications have emerged (e.g., wildlife population monitoring, traffic monitoring, law enforcement, oil and gas pipeline threat detection). UAV can have several advantages over manned aircraft for wildlife surveys, including reduced ecological footprint, increased safety, and the ability to collect high-resolution geo-referenced imagery that can document the presence of species without the use of a human observer. We illustrate how geo-referenced data collected with UAV technology in combination with recently developed statistical models can improve our ability to estimate the distribution of organisms. To demonstrate the efficacy of this methodology, we conducted an experiment in which tennis balls were used as surrogates of organisms to be surveyed. We used a UAV to collect images of an experimental field with a known number of tennis balls, each of which had a certain probability of being hidden. We then applied spatially explicit occupancy models to estimate the number of balls and created precise distribution maps. We conducted three consecutive surveys over the experimental field and estimated the total number of balls to be 328 (95%CI: 312, 348). The true number was 329 balls, but simple counts based on the UAV pictures would have led to a total maximum count of 284. The distribution of the balls in the field followed a simulated environmental gradient. We also were able to accurately estimate the relationship between the gradient and the distribution of balls. Our experiment demonstrates how this technology can be used to create precise distribution maps in which discrete regions of the study area are assigned a probability of presence of an object. Finally, we discuss the applicability and relevance of this experimental study to the case study of Florida manatee distribution at power plants.
|
|
|
Martin, Julien; Sabatier, Quentin; Gowan, Timothy A.; Giraud, Christophe; Gurarie, Eliezer; Calleson, Charles Scott; Ortega-Ortiz, Joel G.; Deutsch, Charles J.; Rycyk, Athena M.; Koslovsky, Stacie M.
(detail)
|
|
|
2015 |
A quantitative framework for investigating risk of deadly collisions between marine wildlife and boats.
Methods in Ecology and Evolution 7: 42-50. 3 figs. DOI: 10.1111/2041-210X.12447. Published online Nov. 12, 2015.
–ABSTRACT: 1. Speed regulations of watercraft in protected areas are designed to reduce lethal collisions with wildlife but can have economic consequences. We present a quantitative framework for investigating the risk of deadly collisions between boats and wildlife.
2. We apply encounter rate theory to demonstrate how marine mammal–boat encounter rate can be used to predict the expected number of deaths associated with management scenarios. We illustrate our approach with management scenarios for two endangered species: the Florida manatee Trichechus manatus latirostris and the North Atlantic right whale Eubalaena glacialis. We used a Monte Carlo simulation approach to demonstrate the uncertainty that is associated with our estimate of relative mortality.
3. We show that encounter rate increased with vessel speed but that the expected number of encounters varies depending on the boating activities considered. For instance, in a scenario involving manatees and boating activities such as water skiing, the expected number of encounters in a given area (in a fixed time interval) increased with vessel speed. In another scenario in which a vessel made a transit of fixed length, the expected number of encounters decreases slightly with boat speed. In both cases, the expected number of encounters increased with distanced travelled by the boat. For whales, we found a slight reduction (˜0·1%) in the number of encounters under a scenario where speed is unregulated; this reduction, however, is negligible, and overall expected relative mortality was ˜30% lower under the scenario with speed regulation. The probability of avoidance by the animal or vessel was set to 0 because of lack of data, but we explored the importance of this parameter on the model predictions. In fact, expected relative mortality under speed regulations decreases even further when the probability of avoidance is a decreasing function of vessel speed.
4. By applying encounter rate theory to the case of boat collisions with marine mammals, we gained new insights about encounter processes between wildlife and watercraft. Our work emphasizes the importance of considering uncertainty when estimating wildlife mortality. Finally, our findings are relevant to other systems and ecological processes involving the encounter between moving agents.
|
|